Non-Monotone Adaptive Submodular Maximization
نویسندگان
چکیده
A wide range of AI problems, such as sensor placement, active learning, and network influence maximization, require sequentially selecting elements from a large set with the goal of optimizing the utility of the selected subset. Moreover, each element that is picked may provide stochastic feedback, which can be used to make smarter decisions about future selections. Finding efficient policies for this general class of adaptive optimization problems can be extremely hard. However, when the objective function is adaptive monotone and adaptive submodular, a simple greedy policy attains a 1 − 1/e approximation ratio in terms of expected utility. Unfortunately, many practical objective functions are naturally non-monotone; to our knowledge, no existing policy has provable performance guarantees when the assumption of adaptive monotonicity is lifted. We propose the adaptive random greedy policy for maximizing adaptive submodular functions, and prove that it retains the aforementioned 1 − 1/e approximation ratio for functions that are also adaptive monotone, while it additionally provides a 1/e approximation ratio for non-monotone adaptive submodular functions. We showcase the benefits of adaptivity on three real-world network data sets using two non-monotone functions, representative of two classes of commonly encountered non-monotone objectives.
منابع مشابه
Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions
The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the c...
متن کاملDiscrete Stochastic Submodular Maximization: Adaptive vs. Non-adaptive vs. Offline
We consider the problem of stochastic monotone submodular function maximization, subject to constraints. We give results on adaptivity gaps, and on the gap between the optimal offline and online solutions. We present a procedure that transforms a decision tree (adaptive algorithm) into a non-adaptive chain. We prove that this chain achieves at least τ times the utility of the decision tree, ove...
متن کاملDeterministic & Adaptive Non-Submodular Maximizationvia the Primal Curvature
While greedy algorithms have long been observed to perform well on a wide variety of problems, up to now approximation ratios have only been known for their application to problems having submodular objective functions f . Since many practical problems have non-submodular f , there is a critical need to devise new techniques to bound the performance of greedy algorithms in the case of non-submo...
متن کاملConstrained Maximization of Non-Monotone Submodular Functions
The problem of constrained submodular maximization has long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of nonmonotone submodular maximization is not as well understood: the first approximation algorithms even for unconstrainted maximization were given by Feige et al. [FMV07]. More recently, Lee et al. [LMNS09] ...
متن کاملAdaptive Submodular Optimization under Matroid Constraints
Many important problems in discrete optimization require maximization of a monotonic submodular function subject to matroid constraints. For these problems, a simple greedy algorithm is guaranteed to obtain near-optimal solutions. In this article, we extend this classic result to a general class of adaptive optimization problems under partial observability, where each choice can depend on obser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015